国际麻醉学与复苏杂志   2025, Issue (8): 0-0
    
重症患者术后低活动型谵妄影响因素分析及风险预测模型构建
杨智清, 黄晗钧, 毛燕飞, 符蝶, 戈晓华, 邱瑾1()
1.上海交通大学医学院附属新华医院
Influencing factors analysis and risk prediction model establishment of postoperative hypoactive delirium in severe patients
 全文:
摘要:

目的 探究重症患者术后低活动型谵妄(HD)的影响因素,并建立风险预测模型。 方法 本研究为前瞻性分析,通过医院电子病历系统便利获取2022年10月—2023年7月及2024年1月—2024年7月入外科重症监护室(SICU)术后患者720例,以7:3将其分为建模组(504例)与验证组(216例),采用重症监护意识混乱评估法(CAM-ICU)联合Richmond躁动-镇静量表(RASS),将建模组分为HD组(117例)与非HD组(387例)。收集患者的一般资料、手术相关资料及入ICU的临床资料,研究术后HD的发生率并进行单因素及多因素回归分析,探究重症患者发生术后HD的独立危险因素,建立预测模型并进行内部验证。绘制受试者工作特征(ROC)曲线,并评价预测模型对重症患者发生术后HD的预测价值。 结果 重症患者术后HD的发生率为23.2%,在所有类型谵妄中占比最高(51.5%)。对患者进行人口学及临床特征的单因素及多因素分析,结果显示,两组患者年龄、高血压、糖尿病病史、手术时间、机械通气、白细胞介素(IL)-6、急性生理与慢性健康评分(APACHE Ⅱ评分)、肌力、日常生活能力(ADL)及ICU住院时间差异均有统计学意义(P0.05);其余指标差异均无统计学意义(均P0.05)。年龄[比值比(OR)1.063,95%置信区间(CI)1.038~1.088]、手术时间[OR 1.255,95%CI 1.090~1.445]、机械通气[OR 1.665,95%CI 1.041~2.662]、IL-6[OR 1001,95%CI 1.000~1.002]、肌力[OR 0.954,95%CI 0.931~0.978]及ADL[OR 0.965,95%CI 0.941~0.989]是重症患者发生术后HD的独立危险因素(P0.05)。ROC曲线分析显示:临界值为0.239时,约登指数最大,敏感度和特异性分别为72.1%和73.0%,预测重症患者术后HD的曲线下面积(AUC)为0.791。 结论 年龄、糖尿病、手术时间、IL-6、肌力及ADL是术后患者术后HD的独立危险因素。利用建立预测模型可以预测术后HD发生,并为其预防和诊断提供帮助。

关键词: 重症患者;术后谵妄;低活动型谵妄;影响因素;风险预测模型
Abstract:

Objective To explore the influencing factors of postoperative hypoactive delirium(HD) in severe patients and establish a risk prediction model. Methods This study was a prospective analysis to facilitate 720 patients in the surgical intensive care unit (SICU) from October 2022 to July 2023 and January 2024 to July 2024 through hospital electronic medical record system, and intensive care confusion assessment (CAM-ICU) and Richmond agitation-sedation scale (RASS) to classify the modeling group into HD group (117 patients) and non-HD group (387 patients). General data, operation-related data and clinical data of ICU were collected, and the incidence of postoperative HD was studied and the univariate and multivariate regression analysis was conducted to explore the independent risk factors of postoperative HD in severe patients, establish a prediction model and conduct internal validation. The receiver operating characteristic (ROC) curve was drawn, and the predictive value of the predictive model for developing postoperative HD in severe patients was evaluated. Results The incidence of postoperative HD in severe patients was 23.2%, the highest proportion of all types of delirium (51.5%). Univariate and multivariate analysis of demographic and clinical characteristics showed that age, hypertension, diabetes history, surgery duration, mechanical ventilation, interleukin (IL) -6, acute physiology and chronic health score (APACHE Ⅱ score), muscle strength, daily living ability (ADL) and ICU stay length (all P 0.05); the other differences were not significant (all P0.05). Age [Ratio ratio (OR) 1.063, 95% confidence interval (CI) 1.038~1.088], operative time [OR 1.255, 95%CI 1.090~1.445], mechanical ventilation [OR 1.665, 95%CI 1.041~2.662], IL-6[OR 1001, 95%CI 1.000~1.002], muscle strength [OR 0.954, 95%CI 0.931~0.978] and ADL [OR 0.965, 95% CI 0.941~0.989] were independent risk factors for postoperative HD in severe patients (P 0.05). The ROC curve analysis showed that at the cut-off value was 0.239, the Youden index was the largest, the sensitivity and specificity were 72.1% and 73.0% respectively, and the area under the curve (AUC) predicting postoperative HD in severe patients was 0.791. Conclusions Age, diabetes, surgery duration, IL-6, muscle strength and ADL were independent risk factors for postoperative HD in postoperative patients. Using a prediction model can predict postoperative HD and help its prevention and diagnosis.

Key words: severe patients; postoperative delirium;hypoactive delirium;influencing factor; risk prediction model