国际麻醉学与复苏杂志   2025, Issue (6): 0-0
    
老年糖尿病患者股骨骨折术后肺部并发症的风险因素分析及其预测模型的构建
方亮, 张皓琳, 吴卓熙, 李洪, 白福海1()
1.遵义医科大学附属医院麻醉科
Risk Factors analysis and prediction model establishment of Pulmonary Complications in Elderly Patients with Diabetes Undergoing Femoral Fracture Surgery
 全文:
摘要:

目的 探讨老年糖尿病患者股骨骨折术后肺部并发症(PPCs)的风险因素及其预测模型的构建。 方法 回顾性队列研究分析2016年1月至2023年12月陆军军医大学第二附属医院收治的1057例诊断糖尿病并接受股骨骨折手术患者的临床资料,按照术后是否发生PPCs分为PPCs组(115例)和Non-PPCs组(942例)。采用Logistic回归分析筛选PPCs的独立危险因素,以列线图法对各危险因素进行综合建模。采用受试者工作特征(receiver operating characteristic,ROC)曲线、校准曲线、Hosmer-Lemeshow拟合优度检验、决策曲线分析(decision curve analysis,DCA)等评估模型,最后以Bootstrap法进行内部验证。 结果: PPCs的发生率10.88%。Logistic回归分析显示:年龄、低蛋白血症(ALB<35g/L)、术前血红蛋白水平、术前合并呼吸系统疾病、手术时间、麻醉时间、麻醉方式、术前等待时间、住院时间是老年糖尿病患者股骨骨折术后PPCs的风险因素,其比值比(odds ratio,OR)及95%置信区间(confidence interval, CI)分别为2.34(1.43~5.65)、19.93(4.89~81.09)、3.25(1.68~7.35)、13.49(5.35~34.05)、3.31(1.53~7.19)、2.15(1.17~3.93)、3.82(1.56~9.32)、5.23(1.37~19.96)、2.11(1.12~3.96),P值<0.05。以上因素构建列线图模型,其预测PPCs发生风险的ROC曲线下面积(area under the curve,AUC)为0.91(95%CI,0.88~0.94),灵敏度和特异性分别为83.7%和81.2%;校准曲线为斜率接近1的直线;Hosmer-Lemeshow检验χ2=1.78,P=0.314;DAC显示当潜在风险阈值取4.2%时可获得较好的净收益。内部验证显示该模型具有良好的一致性。 结论 年龄、低蛋白血症、术前血红蛋白水平、术前合并呼吸系统疾病、手术时间、麻醉时间、麻醉方式、术前等待时间、住院时间是老年糖尿病患者股骨骨折PPCs的风险因素,本研究构建的列线图模型具有较好的临床预测能力及临床实用度。 【关键词】糖尿病;股骨骨折;术后肺部并发症;老年;风险因素;列线图;预测模型

关键词: 糖尿病;股骨骨折;术后肺部并发症;老年;风险因素;列线图;预测模型
Abstract:

【Abstract】Objective: To investigate the risk factors for postoperative pulmonary complications (PPCs) in elderly diabetic patients with femoral fracture and to develop a predictive model for these complications. Methods: A retrospective cohort study was conducted to analyze the clinical data of 1057 diabetic patients aged 65~102 years [median age: 75.0 (IQR: 69.0, 83.0)], including 345 males and 712 females, who underwent femoral fracture surgery at the Second Affiliated Hospital of Army Medical University from January 2016 to December 2023. The patients were divided into a PPCs group (n=115) and a Non-PPCs group (n=942) based on the occurrence of PPCs after surgery. Logistic regression analysis was performed to identify independent risk factors for PPCs, and a nomogram was constructed to integrate these risk factors. The model was evaluated using receiver operating characteristic (ROC) curves, calibration curves, Hosmer-Lemeshow goodness-of-fit tests, and decision curve analysis (DCA). Internal validation was performed using the Bootstrap method. Results: The incidence of PPCs was 10.88%. Logistic regression analysis revealed that age, hypoalbuminemia (ALB<35g/dl), preoperative hemoglobin level, preoperative comorbid respiratory disease, operative time, anesthesia time, anesthesia method, preoperative waiting time, and hospital stay were significant risk factors for PPCs in elderly diabetic patients with femoral fracture surgery. The odds ratios (OR) and 95% confidence interval (CI) were 2.34 (1.43-5.65), 19.93 (4.89-81.09), 3.25 (1.68-7.35), 13.49 (5.35-34.05), 3.31 (1.53-7.19), 2.15 (1.17-3.93), 3.82 (1.56-9.32), 5.23 (1.37-19.96), and 2.11 (1.12-3.96), respectively (all P0.05). The nomogram model incorporating these factors demonstrated an area under the ROC curve (AUC) of 0.91 (95% CI: 0.88-0.94) for predicting PPCs, with sensitivity and specificity of 83.7% and 81.2%, respectively. The calibration curve was a straight line with a slope close to 1. The Hosmer-Lemeshow test yieldedχ²=1.78 (P=0.314). DCA indicated a good net benefit at a potential risk threshold of 4.2%. Internal validation confirmed the good consistency of the model. Conclusion: Age, hypoalbuminemia, preoperative hemoglobin level, preoperative comorbid respiratory disease, operative time, anesthesia time, anesthesia method, preoperative waiting time, and hospital stay are risk factors for PPCs in elderly diabetic patients with femoral fracture surgery. The nomogram model developed in this study exhibits good predictive performance.

Key words: Diabetes Mellitus; Femoral Fractures; Postoperative pulmonary complications; Elderly; Risk factors; Nomogram; Prediction model