国际麻醉学与复苏杂志   2025, Issue (6): 0-0
    
围手术期个体化血压管理的研究进展
田志刚, 刘钊侠, 谢克亮1()
1.黄骅开发区博爱医院
Research progress of perioperative individualized blood pressure management
 全文:
摘要:

围手术期血压管理强调传统一刀切策略未充分考虑患者个体差异,而个体化血压管理通过精细调控患者血压,降低术后并发症。文章回顾近年来围手术期个体化血压管理相关的文献研究,从而为围手术期个体化血压管理提供参考以减少术后并发症的发生。个体化血压管理依据患者基线血压、病理生理变化、手术类型及风险等因素设定血压目标,旨在维持器官有效灌注。个体化血压管理的实施包括常规泵注血管活性药物、使用机器学习算法分析血压波形特征以预测低血压,以及闭环系统自动化调节药物和液体输注,以精确控制血流动力学目标。未来,随着AI、大数据和机器学习技术的发展,个体化血压管理将更依赖精准预测模型和自动化控制,以提升治疗效率和安全性。

关键词: 个体化血压管理; 围手术期; 机器学习; 闭环系统
Abstract:

Perioperative blood pressure management emphasizes that the traditional one-size-fits-all strategy does not fully consider the individual differences of patients, while individualized blood pressure management reduces postoperative complications by finely regulating the blood pressure of patients. This article reviews the literature on perioperative individualized blood pressure management in recent years, so as to provide reference for perioperative individualized blood pressure management to reduce the incidence of postoperative complications. Individualized blood pressure management sets blood pressure targets based on factors such as baseline blood pressure,pathophysiological changes, type of surgery, and risk, aiming to maintain effective organ perfusion. The implementation of individualized blood pressure management includes routine pumping of vasoactive drugs, analysis of blood pressure waveform characteristics using machine learning algorithms to predict hypotension, and automatic regulation of drug and liquid infusion by closed-loop systems to accurately control hemodynamic goals. In the future, with the development of AI, big data and machine learning technology, individualized blood pressure management will rely more on accurate prediction models and automated control to improve treatment efficiency and safety.

Key words: individualized blood pressure management; perioperative period; machine learning; closed-loop system